Posts

Showing posts from June, 2023

Range Breakout strategy MQL4

 //+------------------------------------------------------------------+ //|                                      range breakout strategy.mq4 | //|                                                    Pulkit Chadha | //|                                                    +918126282062 | //+------------------------------------------------------------------+ #property copyright "Pulkit Chadha" #property link      "+918126282062" #property version   "1.00" #property strict extern string TradeStartTime = "15:05";//StartTime extern string TradeStopTime = "15:22";//EndTIME bool EAActivated=false,BUY=FALSE,SHORT=FALSE;...

Python history backtest download data from kite zerodha

  import json import math from kite_trade import * from datetime import datetime , timedelta import time import pandas as pd import pandas_ta as ta enctoken = "" kite = KiteApp( enctoken =enctoken) date_object = datetime( 2023 , 5 , 17 , 9 , 15 ) # Convert to '%Y-%m-%d %H:%M' datetime format formatted_date = date_object.strftime( '%Y-%m-%d %H:%M' ) value=kite.instruments( "NFO" ) print (value) # original_date = datetime.strptime("2023-01-07 00:00:00", "%Y-%m-%d %H:%M:%S") # Desired format # # instrument_token = 738561 # # from_datetime = datetime.now() - timedelta(days=365) # From last 365 days # to_datetime = datetime.now() # price_data_combined = pd.DataFrame() # res = to_datetime - from_datetime # print(res) # # if res.days > 60: # iteration = math.ceil(res.days / 60) # print(iteration) # k = 1 # targetdate1 = from_datetime # while k <= iteration: # source = targetdate1 # targetdate...

Python MT5 connect

  import time import MetaTrader5 as mt import pandas as pd import plotly.express as px from datetime import datetime , timedelta import pandas_ta as ta ticket_buy = 0 ticket_Sell = 0 mt.initialize() id= 70377459 passwod= "2wmnxlsx" investerpwd= "1ezennib" server= "MetaQuotes-Demo" # account data mt.login(id , passwod , server) account_info=mt.account_info() balance=account_info.balance equity=account_info.equity # symbol data num_symbols=mt.symbols_total() ltp_1=mt.symbol_info( "EURUSD" )._asdict() # need to understand this commonused_ltp=mt.symbol_info_tick( "EURUSD" )._asdict() # bid and ask def buy_order(): request = { "action" :mt.TRADE_ACTION_DEAL , "symbol" : "EURUSD" , "volume" : 0.01 , "type" :mt.ORDER_TYPE_BUY , "price" :mt.symbol_info_tick( "EURUSD" ).ask , "sl" : 0.0 , "tp" : 0....

Algofox option intgration

  import requests signal= 0 def Cover_order_algofox ( symbol , quantity , direction = "COVER" , product = "MIS" , order_typ = "MARKET" , strategy = "PRO1" , signal = signal , price = None , trigger=None , sll_price=None ): req = requests.get( 'https://api.algofox.in' ) # algfx = json.loads(req) print (req) req = requests.post( url = 'https://api.algofox.in/api/Trade/v1/authenticate' , json ={ "username" : "admin125" , "password" : "admin125" , "role" : "USER" }) t = req.json() print (t) algofox_token = t[ 'data' ][ 'token' ] headers = "Bearer " + algofox_token headers = { "Authorization" : headers} print (headers) # print(symbol,quantity, direction,product,order_typ) # print(headers,direction,product,quantity,order...

kite trade file

  import os try : import requests except ImportError : os.system( 'python -m pip install requests' ) try : import dateutil except ImportError : os.system( 'python -m pip install python-dateutil' ) import requests import dateutil.parser def get_enctoken ( userid , password , twofa ): session = requests.Session() response = session.post( 'https://kite.zerodha.com/api/login' , data ={ "user_id" : userid , "password" : password }) response = session.post( 'https://kite.zerodha.com/api/twofa' , data ={ "request_id" : response.json()[ 'data' ][ 'request_id' ] , "twofa_value" : twofa , "user_id" : response.json()[ 'data' ][ 'user_id' ] }) enctoken = response.cookies.get( 'enctoken' ) if enctoken: return enctoken else : raise Exception ( "Enter valid details !!!!...